
UML and Model Checking 

Francis L. Schneider 
Jet Propulsion Laboratory, California Institute of Technology 

MS 125-233 Pasadena, CA 91 109-8099l 
francis.l.schneider@jpl.nasa.gov 

Abstract 
UML use cases conceptually identrfy function points or major  requirements that a software system must  satisfy.  Se- 

quence diagrams expand each use  case to show in temporal sequence a more detailed notion of intended system  behavior. 
The validation of sequence charts can first be examined with a model  checker to determine i f  there are requirements 
violations. This process is particularly relevant in the case systems that are concurrent and reactive. We show how to 
apply this technique to  a real-time interferometer control system using the model checker SPIN. 

1 introduction 

This  paper describes a practical application of  model  checking for validating sequence  diagrams for the JPL Interfer- 
ometer  Technology  Program  Real-Time  Control application [ 11. This application is the generic control element  of a sys- 
tem of interferometers that are currently being  designed at the Laboratory.  The  case  study  described  here is the command 
engine  framework, that provides interfaces and  mechanisms to define command  execution as part of a command  proces- 
sor called the Gizmo.  The  Gizmo receives commands  from an external processor that require the use of scarce resources. 
The Unified  Modeling  Language [2] sequence  diagrams specify the temporal  order  of execution. Since it is possible that 
commands  could arrive erratically, it is possible that inadvertent out-of-sequence  commands  could  cause a system  mal- 
function. This  could be due to elements  timing  out in ways that were  not anticipated. Because the process  of  modeling 
such a system is relatively fast, a check can  be  made  to see that various scenario requirements are met  before  committing 
resources  toward the coding process. 

The  approach  described  here  begins  with the design as manifested in a sequence chart. We give  a  complete  example 
of how this process  can be carried out  over a simple  sequence chart. The  model  checker SPIN[3] is was  used  to show  how 
requirements  can be validated over the model. 

The  work  described in this paper  forms part of an on-going investigation into lightweight  formal  methods for Verifi- 
cation and  Validation  of  requirements specifications [4]. We use the term ‘lightweight’ to indicate that the methods can be 
used to perform partial analysis on partial specifications, without a commitment to developing  and baselining complete, 
consistent formal specifications. The  formal  methods are used to model critical chunks  of  an  informal specification, to 
check that key properties hold. The aim  is to find errors, rather than  to  prove correctness. Application  of the methods is 
driven  by the needs  of the project, and  is used  as a modeling tool to  answer  questions that arise during verification and 
validation. The SPIN model  checking  system is particularly useful in this context since it provides  a  very close analog  to 
the UML use  case  sequence  diagram - the Message  Sequence Chart. 

The  work  described  here  was carried out  at  the  Jet  Propulsion  Laboratory,  California  Institute  of  Technology,  under  a  contract  with  the  National 
Aeronautics  and  Space  Administration.  Funding was provided  under  NASA’s  Code Q Software  Program  Center  Initiative  UPN #323-08. Reference 
herein to  any  specific  commercial  product, process, or service by tradename,  trademark,  manufacturer,  or  otherwise,  does  not  constitute  or  imply  its 
endorsement  by  the  United  State  Government  or  the  Jet  Propulsion  Laboratory,  California  Institute  of  Technology. 
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Section 2 introduces the Command Engine that responds to external commands as processed by the Gizmo Command 

Section 3 provides a brief introduction to the SPIN model checking system. 
Section 4 describes how the SPIN model was written to conform to the use case sequence diagrams. It shows how the 

command generator (Actor) was expressed as a finite state machine. The design as represented by the use case sequence 
diagrams is then given. This is followed by a simple example showing the development of one requirement to be tested 
over the model for successful completion. The resulting validation is output as  a Message Sequence Chart. It identifies in 
the process an error in the model as coded by us. The corrected Message Sequence diagram is then briefly elaborated. 

Processor. It then develops the two  use case scenarios modeled in Section 4. 

Section 5 gives a discussion of what was learned. This is followed by how and why development efforts could benefit 
from the application of the process illustrated here. 

2 Interferometer Command  Engine  Description 

The Real Time Control (RTC) Command Engine Framework is described in detail by Johnson [l]. Command en- 
gines are event driven tasks  that perform user specified operations on a Gizmo object in response to commands dis- 
patched by a Gizmo's command processor. In the context presented here command engines are required to  cany out these 
operations because of the need for robust sharing of resources. Command execution accordingly requires the use of a 
mutual exclusion semaphore. These are resources that must be used by one user at a time. In this case  that single user is 
the Command Processor object, tXCommandEngine. This presentation will focus on two possible modes of operation of 
the Command Engine execution sequence. The first is the nominal case, and the second treated is the case where the 
watchdog timer on the mutual exclusion semaphore times out. The UML use case diagram for these scenarios gives a 
statement of their functional capability. Figure 1 shows the two functional levels to be considered. 

9' 
A 

Command X Generator 

Nominal  Command  Engine 
Execution  Sequence 

4 
Watchdog  Time Out 

Figure 1 Real  Time Control Command 
Engine Partial  Use Case Diagram [ 11 
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A particular path  through a use  case is a scenario. It shows in step-by-step form the sequence of message exchanges 
among the actors and objects associated  with the use case. Expanding the first use case, "Nominal Command  Engine 
Execution  Sequence" yields the sequence  diagram  shown  in  Figure 2. Here,  in  response to receiving the  command  X,  the 
Gizmo  command  processor  dynamically creates a new instance of  a tXCommand  Engine that is  associated  with a par- 
ticular tMutex  owned  by the Gizmo. The  Gizmo then  executes the command  engine  by calling Execute  with appropriate 
mutex  execution  time  parameters. The  command engine  responds  by  requesting the mutex  and  waits for  the  mutex to  be 
granted. In the nominal  case the mutex is granted before mutex time  out and  the mutex has started its task level watchdog 
timer to count  down  from the maximum execution time specified by Execute. The command  engine  then spawns  a  task 
to perform the command  engine specific operations  on the Gizmo. The diagram  shows n operations  on the  gizmo that 
occur  within the maximum execution  time  specified. Once the Gizmo  operations have completed, the executable task 
releases the mutex  using  Give  which  in turn resets the mutex's  watchdog timer. The  command  engine  executable task ex- 
pires and deletes the command  engine  created  by the Gizmo.  This description is a simplification of the  actual system for 
clarity in  understanding the following model. Expanding the second  use  case " Watchdog  Time  Out" yields the  sequence 
diagram  shown  in  Figure 3 .  Here,  the watchdog  timeout  occurs when  the command  engine  executable does  not  complete 
within the time specified when the  command engine was executed. 

tGizmo 
Create  Command  Engine 

tXCommandEngine 
I 

Command X 
Execute 

I 

r 

Spawn  Executable 

Command  Engine 
I * 

Operation 1 

. . .  
Command  Engine 
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Self  Destruct 
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m tMutex 
I 

Take 
B 
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4 
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D 

k 
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Reset  Watchdog 

Figure 2 Nominal  Command Engine Execution Sequence [ 11 
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Figure 3 Watchdog Time Out [l] 

3 Model Checking  Introduction 

Model  checking is a method  of verification. It is an operational method  based on the enumeration  of all possible compu- 
tation paths of a finite state machine.  Model  checking is most beneficial when  applied  to systems which are concurrent 
and reactive. These systems  include  communication protocols, aircraft traffic control systems, and the like. These  systems 
can  be sucessfully described by their interactions with their environment.  The SPIN model  checking system was  designed 
for the validation of communication  protocols  by  Holzmann [3]. However, it has  subsequently been  used  in a wide variety 
of applications. One of  its principle advantages is that it  is algorithmic in nature  thereby making it particularly attractive 
for use in the validation of software systems. The use of SPIN involves the following steps: 
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1. Construct  an abstract model of the system  based  on  its design description using SPINS language  Promela. 

2. Using the requirements specification build a set of specifications expressed as clauses in the Linear  Temporal  Logic 

3. Convert the Linear  Temporal  Logic clauses into their equivalent finite state machines as represented in the Promela 
language. 

4. Validate the model  with the specification 

5. Determine if there are violations and  if so repair the design and revalidate the model 

Promela is the modeling  language  of  SPIN. Its basic construct is the process identified by the keyword "proctype". Syn- 
chronous and asynchronous  communication  channels together with global variables can  be used to enable  communication 
between processes. Concurrency is modeled  by interleaving of different processes, while  non-determinacy is modeled  by 
enabling  multiple transitions within the body  of processes. Figure 4 shows a version  of the Alternating Bit Protocol 
(ABP) [51. 

s2r!msg0 r2s?ackl 

3 s2r!msgl 

r2s?ack0 

Mtype = {msgO, msgl, ack0, ackl} 
Chan s2r = [ l ]  of{mtype}; 
Chan r2s = [ 11 of  {mtype}; 

proctype sender(){ 
RO: s2r!msg0 -> goto  R1; 
R1: if 

:: r2s?ack0  ->goto R2 
:: r2s?ack1 -> gotoRO 

fi; 
R2: s2r!msgl -> goto R1 
1 

s2r 
b 

r2s 
a 

s2r?msg0 

proctype receiver() { 
RO: if 

:: s2r?msg0 -> goto  R1 
:: s2r?msgl -> goto R2 
:fi: 

R1:  r2s!ack0 -> goto RO 
R2: r2s?ackl -> goto RO} 
1 

init(run sender(); run receiver()} 

Figure 4 Alternating Bit Protocol 

In proctype receiver(), one  of two statements in the if ...fi clause is chosen non-deterministically. This is because  both 
options are ececutable. If however,  just  one is executable it will be chosen. If neither option is possible the  if ...fi will 
block until one  of the statements  becomes executable. Blocking can occur when the first part of the option is  an explicit 
condition. If the condition is false, that option will be blocked. For example, if there are no messages in channel s2r in the 
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proctype receiver(), then the if. ..fi will block until a message is received. Unblocking will occur when process sender() 
executes s2r!msg0 and upon receipt by channel s2r. The do ... od construct works the same way as the fi...fi except that it 
is repeated indefinitely. The "init" process gets executed first. It starts each of its arguments running as a single thread. 
Here sender() and receiver() run in two threads concurrently. Each is reactive as well since they both take input from their 
environment in unpredictable times and must respond in a specific way. A single run of a Promela program results in a 
simulation of one path through the system. By compiling the Promela program a SPIN executable is produced that will 
produce all possible simulation traces. 

SPIN allows Linear Temporal Logic formulas to be used to test if the requirements specification satisfies traces in the 
model. The LTL formulas are first converted into their equivalent Promela code and then coupled to the SPIN design 
model. If a match is found, SPIN will produce a step by step ascii output showing the details of the trace. The graphical 
equivalent of this trace is SPIN'S Message Sequence Chart. 

4 SPIN Model and UML 

The Message Sequence Chart is of interest here since it is relatively easy to read, and because it is analogous to the UML 
use case scenario. There is also a correspondence between constructors and destructors and Promela processes. UML ob- 
jects are brought into existence or destroyed with constructors or destructors respectively. Promela processes representing 
objects can be similarly created and destroyed. Analogously to the constructor process, initialization parameters can be 
passed to Promela processes at  the time of creation. 

The Promela program created for use here incorporates the two use case sequence diagrams shown in Figures 2 and 3. 
The actor object that supplies the commands labeled X on the use case sequence diagrams shown in Figure 1 is imple- 
mented as a Promela process. As such, it represents a finite state machine that generates commands for execution by  use 
case scenarios. The ACTORFSM is shown in Figure 5. 

#define MAXCOMMANDS 1 
proctype ACTORFSMO 
{ byte commands-sofar = 0; 
end: 
do 
:: if 

:: commands-so-far < MAXCOMMANDS -> 
commands-sopfar++; 
Command!X; 
printf("MSC: -R cmd senth"); 

:: else 
fi 

od 
1 

Figure 5 ACTOR-FSM 

The SPIN model considered as a finite state machine is a design model of the system to be built. As discussed in Sec- 
tion 2, a finite state machine that represents the requirements to be satisfied by the model can also be constructed. Such a 
requirements model for the SPIN modeling system is then built and coupled to the SPIN model. A SPIN validation pro- 
ceeds by executing instructions alternately in the design model and also in the requirements FSM. If the requirements 
FSM can be driven into one of its accepting states, then we can conclude that the requirement has been satisfied. If the 
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requirements FSM represents the negation of the requirement to be satisfied, then we can conclude that a trace exists in 
the design model that violates the requirement. 

For the system above the design states that four cases are possible; we have chosen two that are of interest. First, the 
design model terminates successfully meaning that no timeout occurred and the command engine was able to execute 
with its resource and to then return the mutex. Second, the design model could timeout. This would occur if the execution 
took too long. Both possibilities are valid execution sequences. The conditions specified here were implemented by de- 
fining the 
"successfulcompletionflag" and the "timeoutflag". Their definitions were incorporated into the Promela program, and 
they are as follows: 

#define p successfulcompletionflag == 0 
#define q successfulcompletionflag == 1 
#define r timeoutflag == 0 
#define s timeoutflag == 1 

By using the Linear Temporal Logic, the construction of the equivalent requirements state machine from the linear 
temporal logic statements is automatically generated by the SPIN model checker. Suppose we want to check that success- 
ful completion is possible. In this context the meaning is that the watchdog timer does not timeout before the command X 
is carried out. The LTL formula satisfying the condition that the watchdog timer times out is: 

meaning that it is always the case "[I" that whenever r occurs (i.e. starting with the timeoutflag flag r unset), that 
eventually "0" it becomes set (s). The symbol "->" is that for logical implication. Because we want to  test  that successful 
completion is possible, we generate the negated finite state machine from the formula 

! [](r->os) 

Therefore, by requiring that the timeoutflag flag not time out, this should be equivalent to successful completion in the 
model. The finite state machine generated from the above formula was then coupled to the SPIN model. The code  for the 
generated finite state machine is named a "never" clause since its usual use is to find traces in the model that are require- 
ments violations. This is because we expect a small number of paths through the model that violate the specification with 
a reasonable design model. On the other hand, the number of paths through the model that satisfy the requirements are 
expected to be large compared to those paths that constitute violations. The never clause so generated is: 

never { /* !([](r-><>s)) */ 
TO-init: 

if 
:: (1) -> goto TO-init 
:: (! ((s)) && (r)) -> goto accept-S4 
fi; 

accept-S4: 
if 
1: (! ( ( s ) ) )  -> goto TO-S4 
fi; 

TO-S4: 
if 
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:: (! ((s))) -> goto accept-S4 
fi; 

accept-all: 
skip 

1 

The SPIN model incorporating the behavior of both use case sequence diagrams from figures 2 and three is shown in 
Figure 6 below: 

#define p successfulcompletionflag == 0 
#define q successfulcompletionflag == 1 
#define r timeoutflag == 0 
#define s timeoutflag == 1 

#define MAXCOMMANDS 1 

mtype {X, delete, take, granted, start, abort, ok, timedout, tExecutab} 

chan mutex = [ l ]  of {byte} 
chan deletetXCommandEngine = [ 11 of {byte} 
chan Command = [ l ]  of {byte} 
chan watchdog = [ l ]  of {byte} 
chan kill = [ l ]  of {byte} 
show bit timeoutflag = 0; 
show bit successfulcompletionflag = 0; 

proctype ACTORFSMO 
{ byte commanh-so-far = 0; 
end: 
do 
:: if 

:: commands-so-far < MAXCOMMANDS -> 
commands-so-far++; 
Command!X; 
printf("MSC: -R cmd senth"); 

:: else 
fi 

od 
1 

proctype tInterferometer0 

end: 
do 
:: Command?X; /* received command */ 

od 

{ 

run tXCommandEngine() 

} 
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proctype  Mutex() /* 36 */ 

end: 
do 
:: mutex?[take];mutex?take; 

{ 

mutex!granted; 
watchdog!start; 
if 
:: watchdog?timedout; 

timeoutflag = 1; 
mutex! abort 

:: watchdog?ok 
fi; 

od 
I 

proctype  Watchdog() 
I 
do 

:: if 
:: watchdog?[start];watchdog?start -> 

if 
: : watchdog!  timedout 
: : watchdog! ok 

f i  
:: else -> 

fi; 
od 
} 

proctype  tXCommandEngine() /* dynamically created tXCommandEngine */ 

end: 
mutex!take;  mutex?granted; /* get mutex if available */ 
run tExecutable(); /* dynamically create tExecutable */ 
if 
:: mutex?[abort];mutex?abort; 

:: else -> /* normal end */ printf("MSC -R tXCommandEngine  normal endh"); 
f i  

{ 

kill!tExecutab 

I 

proctype  tExecutable() 
{ 
end: 
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I* execute * I  
if 
:: kill?[tExecutab];kill?tExecutab; printf("MSC: -R kill?[tExecutab]\n") 
:: else-> successfulcompletionflag = 1; printf("MSC: -R exec ops on gizmoh") 

fi 
1 

init{ atomic { run ACTOR-FSM(); run tInterferometer0; 

never { I* !([](r-><>s)) * I  
TO-init: 

run Mutex(); run Watchdog()} } 

if 
:: (1) -> goto TO-init 
:: (! ((s)) && (r)) -> goto accept-S4 
ti; 

accept-S4: 
if 
:: (! ((s))) -> goto TO-S4 
ti; 

TO-S4: 
if 
:: (! ( (s)))  -> goto accept-S4 
fi; 

acceptall: 
skip 

1 

Figure 6 Spin Model for Reduced  Real Time Control Processor 

Validation consists of compiling and executing the Promela program shown in Figure 6. The validation produces the 
Message Sequence Chart shown in Appendix A. And, because we have asked for successful completion scenarios, it is 
only one of many that were generated. The Message Sequence Chart signifies apparently correct behavior. However, in- 
spection of the chart shows that although termination was Successful, the watchdog timer still timed out in the model! 
This could cause a problem in the subsequent implementation if this condition were not covered, the reason being that the 
executable processor object, tExecutable, would no longer be in existence. Calling a destructor on  an object that may be 
non-existent could cause problems. By repairing this problem, the Message Sequence Chart shown in Appendix B was 
produced signifying that all is well now. The corrected version of the Promela code is that shown in Figure 6. In the cor- 
rected version the watchdog timer does not time out. 

5 Summary Discussion and Recommendation 

We have shown how two UML use case scenarios from a reactive system were validated for successful termination. The 
requirement validated here was a functional requirement. The validation system checked to see if there were traces in the 
model that terminate properly. The validation showed that as constructed the model terminated properly according to our 
model, but detailed inspection of the system trace showed that it contained a potential hazard state. A hazard state is one 
that could lead to  an accident - an accident being an occurrence that can not be allowed because it leads to a loss that can 
not be tolerated. In this case a destructor could be called on a non-existent object. This is then by definition a safety vio- 
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lation. See Leveson [5] for a more detailed discussion of system safety. There are of course other requirements that could 
have been tested here. However, the aim was to show how the process of software validation could be carried out on 
UML use case scenarios rather than to provide a detailed systems investigation. 

The analysis technique presented here is a powerful method of verifying complex design scenarios before investing 
time in their construction. The technique would also be  of benefit when using automated design tools such as ilogix 
STATEMATE or Rhapsody [6], where code is auto generated. The reason being that very large numbers of traces can be 
automatically checked with a verification tool such as SPIN. That is, although code is rapidly and accurately generated 
from a design, there is no guarantee that the design itself does not contain traces that violate requirements. It would also 
be possible to couple multiple use case scenarios in end-to-end fashion and to validate those. Although this process can 
quickly produce very complex systems, these systems could still be handled by modeling if they are not  too large. Should 
the state space exceed 2 million or so states, designs can be relaxed by removing detail while staying within broader 
functional margins. 

The use of SPINS Message Sequence Chart makes its output particularly readable to system engineers and designers. 
In particular, at this point a designer could manipulate the model himself to test alternate scenarios. As a bonus the Mes- 
sage Sequence Chart provides a mapping to  the original use case sequence diagrams. 
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